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This paper experimentally investigates the rheology of dense granular flow through
its solid-like to fluid-like transition. Between the well-established flow regimes –
quasi-static and grain-inertial – the physical description of the transition remains
elusive. Our experiment uses a top-rotating torsional shear cell capable of ±1 µm
accuracy in height and 5 decades (10−3 − 100 rad s−1) in rotation rate. The data on
beach sand shows that shear and normal stresses exhibit an inverse rate-dependence
under a controlled volume environment in the transitional regime, while in the limiting
regimes the results are in agreement with previous work. The shear-weakening stresses
illustrate a previously unknown ‘dip’ with increasing shear rate. Under a controlled-
pressure environment, however, the shear-compacting volume-fraction ‘peaks’ with
increasing shear-rate. We combine these results from both configurations to infer
a constitutive law based on a rate-invariant granular fluid compressibility. The
formulation provides an equation-of-state for dynamic granular systems, with state
variables of pressure, strain rate and free-volume-fraction. Fitting parameters from
independent constant-volume and constant-pressure data shows good agreement in
validating our model. Moreover, the degree of grain jaggedness is essential to the rate-
dependence within the transitional regime. The results on the solid–fluid transition
may elucidate the evolution of granular flow anisotropies.

1. Introduction
Under continuous strain, granular material display regimes analogous to all three

phases of matter, i.e. solid, liquid and gas (see Jaeger, Nagel & Behringer 1996).
These phases have distinct modes of momentum transfer between grains under
different amounts of external excitations – surface shear, air injection or vibration.
With small excitations and little or no confinement, granular material escapes from a
jammed state into a mobilized one (see Cates, et al. 1999; O’Hern, et al. 2001; Corwin,
Jaeger & Nagel 2005). Within this regime, the long-duration grain-to-grain interaction
is frictional Coulomb-type with momentum exchanging mainly through rubbing and
rolling. The interactions often involve many grains in aggregated forms (see Savage,
et al. 1983; Savage 1984) within this rate-independent quasi-static regime (QS). With
increasing excitation, granules can achieve a readily flowing phase. Like the molecules
in a dilute gas, particles within this grain-inertial regime (GI) interact predominantly
through short-duration binary collisions (see Savage, et al. 1983). Similar to an ideal
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Figure 1. Schematic of static and dynamic regimes of granular flow. (a) The static volume of
column height H1. Shaded and unshaded regions indicate volumetric void and solid fractions,
respectively. (b) The shaded region shows the ‘free’ volume expanded from static packing.
The total height is H2 and the dilation constant is δ. The exponential velocity profile has
been observed previously. The effective void fraction φ is the ratio between the dynamic free
expanding volume and the original static volume. The diagram is not drawn to scale.

gas within this dynamic state, GI stresses are quadratically rate-dependent. A modified
kinetic theory has been used to describe the underlying physics behind highly agitated
granular materials (see Savage 1998). Between the two extreme regimes – GI and
QS – however, there exists a transition flow that has yet to be empirically defined.

Studies have formulated both computational and theoretical results on the dynamics
of granular flow (see Bagnold 1954; Savage 1984; Hanes & Inman 1985; Jop,
Forterre & Pouliquen 2006). Other authors have studied granular rheology and
its dependencies on shear rate, volume-fraction, gravity and applied pressure (see
Campbell 1990; Karion & Hunt 1999; Hsiau & Shieh 2000; Klausner, Chen & Mei
2000; Tardos, McNamara & Talu 2003; Bossis, Grasselli & Volkova 2004). Specifically,
constitutive equations for shear and normal stresses have been hypothesized for
granular hydrodynamics (see Savage 1998; Bocquet et al. 2002; Hendy 2005).
However, the physics behind the transition between GI and QS regimes have mostly
been overlooked, despite theoretical uncertainties (see Tuzun et al. 1982; Bocquet
et al. 2002) and anomalous empirical data signalling its peculiarities (see Tardos,
Khan & Schaeffer 1998; Dalton et al. 2005). Experiments have indicated that both
contact force distribution (see Corwin et al. 2005; Dalton et al. 2005) and geometrical
anisotropy (see Majmudar & Behringer 2005) evolve within a sheared granular
system under intermediate deformation rates. The collective effect of these local flow
phenomena on the grain scale escalates the complexities of granular dynamics.

In this study, we explore shear rates that span all three dynamic flow regimes:
grain-inertial, transitional and quasi-static. We perform laboratory experiments with
both natural beach sand and milled quartz grains in a torsional shear rheometer
where the rotational velocity is varied systematically over 5 orders-of-magnitude.
We then compare the rheological results from constant-stress and constant-volume
configurations to address granular compressibility. To study the effects of flow
anisotropy and force network, two different grain column heights are used (figure 1).
Sample sphericity is also observed to affect granular flow greatly and result in
an unexpected shear-weakening behaviour. Moreover, a model is devised based on
granular compressibility that retains Coulomb yield conditions and granular dilatancy.
From fitting the model to the experimental data, we find consistent parameters in
support of our equation-of-state for non-thermal non-attractive particle systems. By
doing so, we may have captured the experimental ramifications of localized flow



Transitional regime of granular flow 349

phenomenon – the formation and collapse of clusters and force chains – as a self-
organized resistance to granular deformation.

2. Dimensionless rate
Bagnold (1954) was the first to classify granular flows in a liquid medium. Savage

and others later narrowed their efforts to dry systems and quantified their experiments
with the Savage number (see Savage 1984),

Sa =
ρD2γ̇ 2

σ
. (2.1)

The Savage number is the ratio between inter-granular collisional stress and
consolidation stress, and it is intended to delineate QS, GI and transition flow
regimes. Parameter ρ is particle density, D is mean grain diameter, γ̇ is shear rate,
and σ is consolidating stress. Note the consolidation force includes all compacting
forces such as gravity or electro-static forces if present.

From visually observing the experiment, we suspected that the shear-band thick-
ness – the mobilized region of grains – remained independent of rate. Others have
made similar observations for confined torsional flows (see Savage & Sayed 1984;
Karion & Hunt 1999; Tardos et al. 2003). Visual measurements on the velocity profile
are made at 50 rad s−1 and 0.01 rad s−1 recorded at 1000 f.p.s. and 1 f.p.s., respectively.
Particle-tracking data were fitted to an exponential profile u(y) of

u(y) = UR exp

(
− y

L

)
, (2.2)

where UR is the rim velocity and L is the characteristic flow depth. The resulting fit
at both velocities yields L ≈ 2D, where D is the mean grain diameter. In contrast,
in free-surface or avalanche flows driven by gravity, the characteristic flow depth
geometry depend on channel width or tilt (see Jop, Forterre & Pouliquen 2005).

From the rate-invariant characteristic depth of ≈2D, we infer that the rate-
independent shear flow thickness is of order ∼D. With this constraint, the Savage
number (2.1) then becomes grain-size independent of the form

Sa =
ρU 2

σ
. (2.3)

3. Experiment set-up and procedure
In the present experiment, we investigate the connection between stress, volume-

fraction and strain rate over a wide range of deformation rates (∼5 decades). Our
objective is to understand the granular flow regimes, with an emphasis on the
transition regime and its elusive rheological properties. Using a torsional rheometer
shown in figure 2, we intend to study particle flows governed by purely repulsive and
frictional interactions. The varying parameters in our experiment are top-plate height,
angular velocity and pressure, while material properties, i.e. rigidity and average
grain size, are fixed. Dependencies on polydispersity and sphericity, although not
substantially examined, are discussed in the context of our model and interpretation.

To analyse accurately a system of discrete mobilized particles, it is vital to account
for the following inherent features of granular materials: compressibility; segregation;
crystallization; and packing configurations. First, the compressible nature of the
particle ‘fluid’ warrants two different experimental procedures: constant-volume and
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Figure 2. Illustration of torsional shear cell. (a) The experimental set-up using a cylindrical
shear cell with a radius of 10 cm for lateral confinement. (b) Rheometer TA Instruments
AR-2000. (c) Actual photograph of the polydisperse beach sand used as the sample. The
top surface transmits shear through a taped 80 grit sand paper. The granular medium has a
random packing solid volume-fraction ν ≈ 0.59. The instrument measures and controls τ , σ ,
H and the rotation rate from the top-plate boundary. Angular velocity ranges from 10−3 to
102 rad s−1 which corresponds to 10−5 to 1 ms−1 at the rim.

constant-pressure (see § 3.2 for discussion). In contrast, compressibility is insignificant
for the rheology of conventional liquids.

Secondly, segregation occurs within granular systems of different grain sizes (see
Makse et al. 1997; Shinbrot 2004). Polydispersity – grain mass variance – in our
rotational device, in response, creates an inertial stress gradient in the radial direction.
The stress gradient then segregates large grains to the rim away from smaller grains
near the centre. To investigate the impact of this segregation effect on our results, we
performed the same experiments on beach sand with and without sifting.

Thirdly, crystallization occurs within systems of spherical particles where abrupt
changes occur at the liquid–crystal cross-over (see Drake 1990). To avoid this
transition and to sustain an amorphous state at low or zero shear rates, therefore,
the chosen polydispersed sample must have irregular jagged shapes. Thus, we choose
samples of angular beach sand and spherical F-35 foundry sand (US Silica Co.) to
show sphericity effects on granular rheology. Figures 3(a, b) and table 1 summarize
the properties of the three samples – sifted sand, unsifted sand and US Silica F-35 –
used in our experiments.

Lastly, there exist many meta-stable configurations, or stackings, of any given set
of particles depending on the loading history (see Campbell 2005). These meta-stable
packing configurations arise from the frictional nature of interacting grains, where
the smallest perturbation in the magnitude or the direction of the compressive stress
can disrupt this fragile arrangement (see Liu & Nagel 1998). One implication of
this fragility is material compaction: granular packing increases its solid volume-
fraction when subjected to vibration or deviatoric strain (see Duran 1999). Thus in
our experiment, we anneal each granular sample from a pre-experimental shear until
there is no compaction within the experimental time scale of hours.



Transitional regime of granular flow 351

(a)

(c)

Grain
size Wear

400 µm

400 µm

(d)

(b)

Figure 3. Micrographs of actual grains using KP-D50 (Hitachi). Samples used are (a) US
Silica F-35 foundry sand, and (b) beach sand. The two samples show large sphericity differences
but with similar averaged size. Photographs using a Canon PC1060 camera show (c) surface
size segregation of unsifted sand after reaching steady state and (d ) shear surface wear near
the edge of the 20 mm diameter sandpaper after 10 experiments.

Properties Sifted beach sand Unsifted beach sand US Silica F-35

Material Quartz/lithic Quartz/lithic Silica quartz
Density ( kg m−3) 2650 2650 2650
Shape Angular Angular Quasi-spherical
Diameter range (µm) 197–1142 47–2000 282–1142
Mean diameter (µm) 438±188 458±255 530±152
Static volume-fraction ≈0.61 ≈0.61 ≈0.62

Table 1. Sample properties. Sifted beach sand preparation uses US standard. mesh size 18 and
120, with respective opening sizes of 1000 µm and 125 µm. US Silica F-35 is prepared from
the factory. The beach sand originated from life guard tower 9, Santa Monica, CA, and it is
stored at room temperature and humidity. Grain-size and variance data are acquired using
laser diffraction (Beckman–Coulter particle-size analyser).

3.1. Instrument set-up and sample preparation

To investigate the granular flow, we use a torsional rheometer (AR-2000, TA
Instruments). As seen in figure 2, the system has an upper rotating plate with
20 mm diameter and a lower fixture that can detect normal force (± 0.1 N) through
an internal force transducer. The rheometer is a highly sensitive feed-back controlled
instrument that simultaneously monitors torque, normal force, top-plate height and
angular velocity.
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Traditionally, the system is used to study the rheological behaviour of conventional
fluids. In our application, the upper plate is used for compression either by controlling
normal stress (± 1 Pa) or plate height (± 1µm), while shearing through a user-specified
velocity range. The upper plate has taped 80 grit (300 µm sand grains) sandpaper to
facilitate stress transmission. Tape is also set on the bottom fixture to gain traction.
To contain the grain sample, a Teflon self-lubricating sleeve, with a thickness of
0.4 cm is concentrically aligned around the shearing plate. Although the sidewall
friction is unavoidable, the system can be rotationally mapped to counter all of the
external resistance by applying a background torque. During optimal alignment, the
experiment achieves an average sidewall stress contribution of ≈1% of the total shear
stress. An annulus set-up with concentric inner and outer walls has been considered,
but all attempts failed to reduce wall friction to below 10% of the overall stress.
Sidewall flex/stretching is not of concern for stress variations of ∼103 kPa for a rigid
cylindrical sleeve.

The samples used in these experiments are natural and sifted beach sand and US
Silica F-35 foundry sand, all of which are composed of grains that are highly rigid
and irregular in shape (table 1 and figure 3a, b). The sifted beach sand is prepared
by sieving the sample through a US standard mesh size 18 and 120, respectively,
with 1000 µm and 125 µm openings. US Silica F-35 is sieved from the factory. The
beach sand is predominantly quartz (>70%) with small quantities of lithics and
other minerals while the US Silica sample is entirely quartz. These materials have
a Young’s modulus of 30−70 GPa and thus they are highly rigid compared to our
experimental stresses of ∼103 Pa. Other relevant sample properties are given in table 1.
The reference volume-fraction is measured by weighing the samples after compaction
with light tapping. Grains examined post-experimentally do not show changes in
polydispersity and sphericity.

3.2. Procedure

To begin, the granular sample is loaded up to one of two heights: 1mm and 6 mm
that correspond to roughly 3 and 20 grain diameters, respectively. Although there are
large 1 mm grains in the 1 mm columns, shape irregularities and surface roughness
∼300 µm allow smaller grains to contact the top and bottom surfaces. The reason
for using the 3-grain column is, according to numerical simulations of Tardos et al.
(2003) and experimental observations by Hanes & Inman (1985), that 10 to 13 grain
diameter is the ‘effective’ shearing zone in a granular layer because of the exponential
decay of the velocity with depth discussed in § 2. The result from a 3-diameter column
would therefore pinpoint the effect of an inadequate shear zone; an effect of shallow
inter-grain force-propagation on the stress-rate relationship (see de Gennes 1999;
Majmudar & Behringer 2005).

After loading the granular sample, the granular layer is pre-sheared for ∼100
rotations to make the packing consistent. Then during every experiment, the sample
is sheared from fast to slow at logarithmically distributed velocities. Slow-to-fast
experiments have similar results, as will be shown in figure 6. (The shearing surface
does not degrade significantly during high shear rates but after 8–10 runs, degradation
eventually produce erratic results.) During shear, the sampling rate for shear/normal
stress and column height is 10 Hz. Other experimental parameters, i.e. velocity range
and averaging times, are given in table 2. Generally, the chosen velocity range stays
above rates that result in stick–slip (see Aharonov & Sparks 2004) and below rates
that promote excessive wear on the top-plate sandpaper as shown in figure 3(d ).
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System parameters Constant volume Constant pressure

Column heights 1 to 12mm –
Pressures – 1 to 7 kPa
Velocity step 1 0.001–0.01 rad s−1 (300 s)
Velocity step 2 0.01–1 rad s−1 (180 s)
Velocity step 3 1–100 rad s−1 (30 s)

Table 2. Control parameters of constant volume and constant pressure procedures. The
column height is user-specified at 10 rad s−1 for a particular pressure during constant volume
procedures. The pressure is user-specified during constant pressure procedures. The velocity
steps and their range use different data averaging times, indicated in parentheses. Each
logarithmic decade has 6 to 10 data points.

To account for granular compressibility, two general shearing conditions are
used: constant volume and constant pressure. In the constant-volume procedure,
the specified column height stays fixed while the instrument varies pressure and rate.
The specified column height is system-determined from a pre-experimental procedure
of fixed pressure (104 Pa) and velocity (10 rad s−1). The reason is because of volume-
dilatancy, the column height in the constant-volume procedure must be set while
the grains are mobilized. In this configuration, the granular volume-fraction remains
constant. The second shearing condition is a constant-pressure configuration. A user-
specified normal stress (∼103 kPa) is feedback-controlled by adjusting the column
height, resulting in changes of volume-fraction as a function of shear rate. Both
constant-volume and constant-pressure procedures have a fixed numbers of particles.

4. Results and discussion
A torsional shearing device can achieve a large torsonial strain but cannot accurately

capture the rate-dependent rheology of non-Newtonian fluids. The drawback is that
the shearing velocity become a function of the radius, r , measure from the centre.
In the context of granular flow, the issue is that the flow is always quasi-static in
the centre even if the rotational velocity is extremely high. The measured stress is
therefore an averaged stress 〈σ 〉 given as

〈σ 〉 =
2π

Adisk

∫ R

0

σ (r)r dr.

We therefore need to approximate the Savage number in (2.3) with caution. We
remedy this issue by computing an effective linearized velocity U = ωR∗ using the
stress-centroid to find R∗ as

R∗ =

∫
disk

r(τdA)∫
disk

τdA
, (4.1)

where r is radius and dA is the infinitesimal disk area. Then the Savage number from
(2.3) becomes

Sa =
ρ(ωR∗)2

σ
, (4.2)

where (2/3)R � R∗ � (4/5)R, ω is angular velocity and R is the shear plate radius.
Within the rate-dependent GI regime, the constant factor is 4/5 rather than 2/3
because the inertial stresses vary with radius as ∼r2. Therefore the velocity (4.2)
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Figure 4. Log–log plot of shear stress versus the Savage number of ≈1 mm column. Both
experiments have the same column heights and similar pressures. The Savage number is
calculated at the transition into both grain-inertial and quasi-static regimes to be Sa ∼ 1 and
Sa ∼ 10−7, respectively. , 3298 pa; +, 3075 pa.

under-estimates the equivalent linear velocity, and thereby reduces the Savage number,
in the GI regime. The analysis also disregards the effects of secondary flow, with its
velocity gradient in the radial direction. Hanes & Inman (1985) have used similar
assumptions to interpret their torsional shear cell results.

4.1. Constant-volume experiment

Figure 4 outlines the flow regimes to be presented. The GI regime begins around ω =
25 rad s−1 and the conversion using (2.3) and (4.2) results in Sa ∼ 1 at this velocity.
The QS regime and its non-trivial transition into the GI regime is also observed.
Figure 4 is reminiscent of the powder flow diagram of Tardos et al. (2003) depicting
various granular flow regimes. Using our parameters, the dimensionless rate used in
Tardos et al. (2003) and Klausner et al. (2000) also results in U/(gD)1/2 ∼ 1 and the
consistency between the two dimensionless rates validates the present flow regimes.

4.1.1. Grain-inertial (GI) and quasi-static flow (QS)

In figure 5(a), the shear stress is plotted against angular velocities through a range
of 10−3 to 102 rad s−1. They correspond to a Savage number of the order of 10−11

to 1. The two limiting regimes – GI and QS – can be identified easily for all three
samples via visual inspection where the stresses are rate-independent and quadratically
rate-dependent, respectively. To fit our results, a power-law is used

τ = τ0 + τ1ω
n or τ = τ0 + (τ1C)γ̇ n, (4.3)

where ω is the rotation rate, γ̇ is the shear rate at the wall and τ0 , τ1 and C are
rate-independent fitting parameters.

Our power-law fit yields a nearly quadratic stress-rate relationship similar to many
experimental and theoretical results, showing a quadratic stress dependence on shear
rate (see Savage 1984; Savage & Sayed 1984; Hanes & Inman 1985; Karion &
Hunt 1999; Klausner et al. 2000). From figure 5(a, b insets), the rate-dependent shear
stress within the grain-inertial regime for polydispersed beach sand is observed. The
rate-dependence is nearly quadratic, i.e. n ≈ 2, for both shear and normal stresses,
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Figure 5. Log–log plot of wall stresses versus rate at constant volume and ≈6 mm columns.
(a) Shear stress τ versus angular velocity ω. Average normal stresses σavg uses all pressure data
of a single run. (b) Normal stress σ versus angular velocity ω. The insets (F-35 not shown) show
the power-law exponent fitted to the data along with the coefficient n in (4.3). The standard
deviation values are based on 100 bootstrap trials. Sifted sand is used unless noted. Unlike
beach sand, F-35 foundry sand of higher sphericity does not weaken in the transitional regime.
The column height is between 6 mm and 12 mm for all runs which exceeds the mobilized
regions of ≈10 grain diameters; thus instead of column-height, averaged pressures label each
run in the legend.

but the lack of GI data results in large standard deviation values of ∼0.1 computed
from boot-strapping. The present experiment agrees with previous work that yielded
a range of powers, n, between 0.75 and 2 for the grain-inertial stresses (see Savage
1984; Klausner et al. 2000; Sawyer & Tichy 2001; Tardos 2003).

All three flow regimes are revealed for a medium with a single volume-fraction. In
contrast to the conclusion drawn by Campbell (2002), it is possible to obtain the GI
and the QS regimes from an equally dense medium. In our case, the volume-fraction
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of statically packed sand is ≈0.61, slightly less than the maximum random close
packing for spheres of ≈ 0.64.

4.1.2. Transitional flow

In figure 5(a, b), both shear and normal stresses are inversely proportional to
shear rate within the transitional regime using unsifted and sifted beach sand. Three
runs with sifted sand at average pressure ∼14 kPa uses identical parameters to show
consistency. One additional run with sifted sand at ∼10 kPa shows the dependence
of pressure: pressure induces shear-weakening since stresses dip less under smaller
pressures. Unsifted sand at ∼10 kPa shows minimal grain segregation effects where
shear-weakening during intermediate rates matches well with sifted sand at the same
pressure. At a higher sphericity, however, US Silica F-35 sheared at ∼14 kPa does
not weaken during the same transitional velocity range. Average pressures are based
on the entire velocity range. In addition to figure 5, figure 6 shows repeatability of
the current results for unsifted sand and F-35 as well as results from slow-to-fast
shearing.

Here we offer a simple model to show that the shear-weakening phenomenon is
not an artefact of the torsional geometry – namely the non-uniform shear rate that
depends on radius – and that a similar stress-rate relationship would occur in a
linearized shear flow. Following § 4.1.1 and (4.3), we assumed that

τ = τ0 + τ1C

(
ωR∗

L

)2

for γ̇ ∼ ωR∗

L
, (4.4)

where R∗ is derived in (4.1) and L is the characteristic length from (2.2). By simply
separating the total stress into frictional and kinetic parts, this model, similar to
previous work (e.g. Savage 1984), can only predict a monotonic increase τ with rate
ω. This is not what we observed. The shear-weakening transitional flow cannot be
generated from (4.4), thus it must be intrinsic to the rheology of a granular fluid,
rather than to any geometrical artefacts.

The exact physics behind the weakening is unknown. However, we offer a qualitative
explanation: the observed pressure-induced shear-weakening in granular systems
elucidates the evolution of its force network. As shown by Ostojic, Somfai, & Nienhuis
(2006) under large loads, the fractal medium adapts to external stresses by aligning
strong contacts into filamentary force chains. This stress-induced anisotropy also
exists geometrically (see Majmudar & Behringer 2005) where the filamentary chains
physically align to the direction of the externally applied shear stress. These adaptive
chains can then resist shear by carrying ≈10 times the mean external stress (see
Corwin et al. 2005). Together, in response to stress, the force-chain formation can be
interpreted as a self-organizational stiffening of granular materials.

As rate increases, grain interactions become more collisional and less frictional (see
Corwin et al. 2005). Instead of prolonged contacts, these rapid collisions reduce spatial
anisotropy and hence decrease its resistance to shear. This force network breakdown
is then illustrated by the shear-weakening transition. As seen in figure 5(a, b),
under constant volume, the dissimilar stresses within the transitional regime seem
to converge when approaching the GI regime, for pressures of 10 and 14 kPa. This
trend indicates the diminishing effect of contact force anisotropy with increasing
shear; a consistent interpretation that leads to a more uniform (ergodic) kinetic GI
regime where grains take on binary collisions. A similar shear-thinning rheology is
common in dense hard-core colloidal fluids (see Larson 1999).
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Figure 6. Log–log plot shear stress versus angular velocity at constant volume (H ≈ 6 mm).
Similar to fast-to-slow experiments in figure 5(a), slow-to-fast experiments show transitional
shear-weakening rheology. Samples F-35 and unsifted sand experiments shows repeatability in
extension to figure 5(a).

Another crucial feature arises in the comparison between beach sand and US Silica
F-35 where shear weakening is not observed for the latter (also in figure 6). In
this case, we explain that samples with different degrees of sphericity have different
packing preferences. In general, because of the ‘caging’ effect – mobility hindrance by
neighbouring particles – angular grains flow less easily than spherical grain samples
(see Yu et al. 1996; Zou & Yu 1996; Larson 1999). As seen in figure 5, under the
same average pressures, lower shear and normal stresses are observed for F-35 than
for beach sand. Flowing with perhaps local crystallized regions (see Drake 1990),
the self-organized stiffening mechanism possible for angular beach sand is entirely
avoided by spherical F-35. In hindsight, O’Hern et al. (2003) have also suggested that
a mixture of highly angular particles is required to explore the entire granular phase
space.

The above interpretations may explain the absence of the transitional regime from
earlier simulations and experiments. Other concentric shear cells use gravity as the
consolidating pressure of the order of 102 Pa at mid-height for a 10 cm column (see
Bocquet et al. 2002; Tardos et al. 2003; MiDi 2004). Insufficient gravity forces, together
with perhaps uncontrolled volume, may not induce the same structural responses as
explained here. Similarly, simulations using perfect spheres with varying rigidity can
(see Campbell 2005; da Cruz et al. 2005) recover only the rate-independent transition
regime as indicated by our quasi-spherical F-35 samples.

The shear-weakening transition is shown to be almost insensitive to sample
polydispersity by the sifted sand results in figures 5 and 6. This is consistent
with a configuration where the stresses are transmitted vertically between relatively
monodispersed particles. Driven by the rotating plate, segregation occurs by grains
exerting centripetal forces directed outward in the radial direction. As shown in
figure 3(c), this outward inertial force circumferentially aligns equal-sized grains
near the shearing surface with larger grains separate from smaller ones. As grains
segregate by size, the colliding particles in adjacent horizontal layers are relatively
mono-dispersed. Therefore a torsional cell may reduce, or even eliminate, the effect of
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Figure 7. Semi-log plot showing coefficient of friction versus the Savage number for beach
sand in a constant-volume experiment. The plot compares experimental data from high-
and low-shear column-heights. The higher height runs exceed the shear-band thickness of
≈10 grain diameters. The lower height has ≈3 grain diameters across. θrepose is the angle of
repose measured from the slope of a static granular pile. The observed increase of the friction
coefficient µf ∼ tan θrepose of all runs compared to the angle of repose of a static pile may
indicate the dependence of the friction coefficient on volume-fraction. All other runs exhibit a
regime-invariant friction coefficient.

polydispersity in steady-state granular rheology. The result supports the assumption
of a monodispersed sample that is made to calculate the Savage number in § 2.

We note in passing that the lack of shear-weakening in the US Silica F-35 results
also demonstrates that the ‘dip’ is not an artefact of our torsional device.

4.1.3. Friction

In figure 7, we use the constant-volume method to investigate the friction coefficient
by plotting the ratio from shear and normal stresses against the Savage number. Not
surprisingly, the close resemblance of shear and normal stress behaviour produce a
friction that is nearly independent of shear rate. In support of our result, both Savage
(1998) and Cheng & Richmond (1978) proposed that normal stress is proportional
to the shear stress and independent of how particles interact.

In figure 7, the friction coefficient is compared with the angle of repose, θrepose,
of the sample measured from the inclination of a prepared sand pile. The resulting
friction coefficientof µ = 0.78, where µ = tan θrepose, is about 11% lower than the
compressed sand from our shear-flow experiment (see Nedderman 1992). The
comparison highlights the mobility hindrance due to confinement where grains under
constant volume have less interstitial space than flowing grains near a free surface.
The lack of space inhibits grain mobility, thus producing a higher friction coefficient
than unconfined flows – the difference is revealed by the intricate filamentary network
of force chains explained in § 4.1.2.

4.2. Constant-pressure experiment

Figure 8 is a semi-log plot of normalized volume-fraction versus rotation rate from
constant-pressure experiments. It is erroneous to report the bulk volume-fraction
since only the height change is measured. Thus the normalized volume-fraction is
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Figure 8. Semi-log plot of dimensionless volume-fraction, ν/ν0, versus rotation rate; ν/ν0 is
calculated from the height measurements in Appendix B. Grain columns are approximately
6 mm. The right-hand y-axis is the observed change in height between the plates. The maximum
height changes measured from low to high pressures are 15, 31 and 41 µm, respectively. The
rising tails during high velocities occur because of slow system response. Note that the curves
in this figure have the same general form as in figures 5 and 10 except that the y-axis is
inverted (see § 5 for discussion in terms of constant compressibility).

calculated by comparing height change to the characteristic shear-band thickness,
L ≈ 2D, discussed in § 2 (see Appendix B for derivation). From the observations, the
volume-fraction data can also be separated into QS, GI and transition regimes. As the
mirror-image to the constant volume stress, it suggests that inverse Bagnold scaling,
i.e. the quadratic rate dependence, also applies for the volume-fraction. Moreover,
the different peaks in figure 8 show that volume-fraction is inversely proportional to
pressure, implying the existence of granular compressibility.

Constant-pressure and constant-volume rheologies are intimately related. The
extremums in applied stresses and volume-fraction in figures 5(a, b) and 8 occur
at the same rotation rate (at ω ≈ 23 rad s−1). Under a non-equilibrated steady state,
the work done at the shearing surface dissipates completely through inelastic particle
collisions. The work of surface stresses, given by ∇·(T̃ · Ũ) where T̃ is the total stress
tensor, is directly proportional to the applied stress at the wall. Hence in figure 5(a, b),
the minimum in shear and normal stresses is also the minimum in energy dissipation.
Since volume inversely relates to pressure, a local minimum in stress corresponds to
a local maximum in volume-fraction and vice versa. Thus in figure 8 with pressure
kept constant, the maximum in volume-fraction occurs at the shearing state which
corresponds to the minimum dissipation. The coincidence of extremums suggests that
volume-fraction, stress and strain rate are intimately linked through an equation of
state that does not allow them to vary independently. Furthermore, the stress minimum
and volume-fraction maximum indicate an optimum condition for transporting and
manipulating granular systems.

4.3. Column height dependence

Figure 9 plots shear stress versus rotation rate to compare results from 7 mm and
1 mm columns. The comparison shows the effect of inadequate sample size since the
shear-band depth captured at 0.01 and 50 rad s−1 is 10 grain-diameters, or ≈4 mm
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Figure 9. Log–log plot of shear stress versus rotation rate for constant volume (sifted sand).
Plots compare results from 7 mm and 1 mm columns to show the effect of an inadequate
sample volume. The shear-band depth captured at 0.01 and 50 rad s−1 is 10 grain-diameters,
or ≈ 4 mm. Results from 1 mm columns indicate a clear distinction between QS, GI and
transitional regimes.

(see § 2). Similar to the results of 7 mm columns, shear stress as a function of rate for
1mm columns also indicates clear distinctions of QS, GI and transitional regimes.

The qualitative comparison indicates a close resemblance between QS and GI
stresses from using two different column heights. The lack of grains, however,
must affect the relationship between rate and stress, since the flow-depth in the
1mm columns is much less than the observed shear-band thickness ≈4 mm. The
granular fluid must cope with its thinner column with a higher anisotropy in force-
chain orientations, as discussed in § 4.1.2. Therefore we conclude, in agreement with
dimensionless analysis (see Appendix A), that the limiting regimes follow the basic
frictional and inertial grain interactions, regardless of flow thickness. Yet, 1 mm flows
have dissimilar shear-weakening transitions to 7 mm flows, a claim supported in § 5.1
and table 3 by the disparity between fitting coefficients.

5. Constitutive law
A key uncertainty in describing the fluid-like behaviour of granular materials is

the transition between the collisional and frictional regimes. The inability of the
continuum constitutive relations, such as the Navier–Stokes equation, to account for
the heterogeneities of granular flow has been a difficult issue to overcome. To model
the macroscopic quantities of granular mediums, such as stress, packing density or
flow profile, many theories rely on the visco-plastic or elasto-plastic description used
for metals (see Savage 1998; Dartevelle 2004). Although these approaches capture
certain aspects of the frictional nature of granular materials by assuming perfect
plasticity, they are inadequate for the results presented here. The rate dependence in
stress and volume-fractions captured in figures 5 and 8 indicate the complexities of
granular flow unaccounted for by the continuum models.

To capture the macroscopic effect of localized flows, we describe granular flow from
analogous concepts in conventional thermodynamics. Similar to pressure, temperature
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Fitting parameters CG1mm CG6mm CF7 kPa Ratio

β × 104 (Pa−1) 15 ± 4 6.1 ±0.4 5.9 ± 0.3 1.0
C1 ≈ 1 ≈1 ≈1 1.0
C2 × 105 (s) 19 ± 6 2.1 ± 0.8 2.5 ± 0.6 0.84
C3 × 103 13 ± 6 0.9 ± 0.7 2.1 ± 0.5 0.42
δ† (µm) 13 13 13 1.0

†The same value for the dilatancy volume, δ, is imposed for all experiments a priori to solve for φ
in Appendix C.

Table 3. Summary of the fitting constants for constant-volume and constant-pressure
experiments. All values are averaged amongst all experimental fits. The ratio compares the
parameter fits between the 6 mm constant-volume and constant-pressure data. A ratio of unity
signifies the consistency between the fitting parameters across both experiments. The ± values
represent standard deviations of the parameters for the best-fit to each of the experimental
runs under the given conditions. C1 is approximately unity, but it must satisfy the constraint of
C1 < 1 for materials under consolidation. Averaging involves 5 runs each for 1 mm and 6 mm
constant-volume experiments and 2 runs for constant-pressure experiment.

and density for describing solids and fluids, dry granular flow may be defined
by pressure, deviatoric strain rate and volume-fraction (see Liu & Nagel 1998).
Although granular fluids are non-thermal in the classical sense unlike molecular fluids,
the minimization in gravitational potential nonetheless drives granular compaction
under external excitations into energetically favourable states. Below, we develop an
equation-of-state to model our results.

Our model must satisfy the shear-weakening and shear-compacting observations in
figures 5(a, b) and 8. Note, the following analysis applies only to beach sand results.
Quantitatively, the two rate-dependent observations from our beach sand experiments
within intermediate shear rates are(

∂σ

∂ν

)
γ̇

> 0,

(
∂σ

∂γ̇

)
ν

< 0, (5.1a, b)

where σ is normal stress, ν is solid-volume-fraction, and γ̇ is shear rate. The first
inequality of (5.1) is the compressible relation that describes granular shear bands.
It resembles a conventional compressibility relation. The physical explanation of the
second inequality in (5.1) remains unknown, yet it agrees with the scenario presented
in § 4.1.2 and figure 5.

Changes in volume-fraction with respect to shear rate can be derived from (5.1a, b)
using the cyclic rule, (

∂σ

∂ν

)
γ̇

(
∂ν

∂γ̇

)
σ

(
∂γ̇

∂σ

)
ν

= −1. (5.2)

Thus similar to the thermal expansion relation – if shear rate takes on the role of
temperature – volume-fraction at constant pressure relates to rate by(

∂ν

∂γ̇

)
σ

> 0, (5.3)

as seen in figure 8.
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To proceed, we define an observable compressibility β for the shear band within a
two-phase mobilized granular system.

β ≡ 1

V

(
∂V

∂σ

)
γ̇

, (5.4)

where V is the volume of the test cell. Since V ∝ ν−1, changes in the cell volume can
be mapped to changes in the solid volume fraction in the shear band, even though
the total volume of the shear band cannot be measured directly. The compressibility
is related to the data using the cyclic rule (5.2) as

1

V

(
∂V

∂σ

)
γ̇

= − 1

V

(
∂V

∂γ̇

)
σ

(
∂γ̇

∂σ

)
V

. (5.5)

Using (5.5) and the variations with strain rate of the stress (σ ) and column-height
(�H ) data in figures 5 and 8, the mean granular fluid compressibility β in both
quasi-static and transitional regimes is ≈ 4 × 10−3 Pa−1, independent of strain rate.

We must clarify that the actual volume change of the rigid constituent is negligible
under low to moderate pressure, i.e. σ 	 E, where E is the grain elastic modulus.
Therefore, the compressible nature of granular flow is solely due to the volumetric
changes in the interstitial spaces. In a crystalline solid, the physical interpretation of
β lies in the second derivative of lattice potential per molecule with respect to lattice
spacing. In granular flow, however, the physical origin of β is not yet understood.

Also, the compressibility is distinctly different from the irreversible process of
granular consolidation (see Nedderman 1992; Nowak et al. 1997). For both static
and dynamic granular systems, consolidation irreversibly reduces void fraction.
Here, in contrast, we assume the changes in volume-fraction are entirely reversible.
In this context, the term reversible does not imply an isentropic process as in
classical thermodynamics. Figure 8 shows volumetric reversibility as the same medium
contracts and expands across a maximum volume-fraction.

To develop a constitutive law from a free-volume analysis, we now define an effective
interstitial free-volume fraction e. Up to and excluding the GI deformation rates, the
compressibility of a mobilized granular solid in terms e, at constant, non-zero shear
rate is [

1

e

∂e

∂σQS

]
γ̇

= −β for β � 0, (5.6)

where σQS is the contribution to the isotropic compressive stress in the QS and
transitional regimes. (The GI contribution is added later in (5.21).) The interstitial
void fraction, e, is defined as the ratio between the expanded ‘free’ volume, which
allows for grain mobilization, to the bulk static volume (see figure 1). It is equal to
zero for a static packing, but it has a finite value for a network of moving grains; e

relates to the granular volume-fraction ν as

ν =
ν∞

1 + e
, e =

ν∞ − ν

ν
, e � 0, (5.7)

and ν∞ is the maximum volume-fraction during steady-state shear as a function
of maximum pressure and minimum shear rate. The effective void fraction is also
a measure of grain mobility within a dense packing. Integrating (5.6) at constant
compressibility and substituting into (5.7) at a constant shear rate γ̇ , yields

σQS(ν) = − 1

β
[ln (e) + const] =

1

β

[
ln

(
ν

ν∞ − ν

)
+ const

]
. (5.8)
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Separating the integration constant into rate-independent and rate-dependent parts
A and B(γ̇ ), respectively, (5.8) becomes

σQS(ν, γ̇ ) =
1

β

[
ln

(
ν

ν∞ − ν

)
+ A + B(γ̇ )

]
. (5.9)

To solve for the unknowns in (5.9), we use the inequalities in (5.1) to formulate
the effect of volume-fraction on pressure and shear rate. From observation, volume-
fraction ν has the following boundary conditions for the QS component:

ν = ν ′
0 as σ → 0, γ̇ → 0, (5.10a)

ν = ν ′
∞ as σ → 0, γ̇ → ∞, (5.10b)

ν = ν∞ as σ → ∞, γ̇ → ∞, (5.10c)

where ν ′
0 and ν ′

∞ are the maximum and minimum volume-fractions at the limit of
zero applied load, respectively, and ν∞ is the theoretical maximum dynamic volume-
fraction. However, in actuality for the current experiment, ν ′

0 and ν ′
∞ are the respective

absolute maximum and minimum volume-fractions for systems under gravity. For
comparison, ν ′

0 <ν ′
∞ � ν∞ and all of them are quantities measured in a mobilized

particle system. Note, although there is no absolute minimum packing under zero
applied stress, gravity enforces the lower limit on volume-fraction in our experiment.
Using boundary condition (5.10b), (5.9) becomes for γ̇ → ∞

1

β

[
ln

(
ν ′

∞
ν∞ − ν ′

∞

)
+ A + B (γ̇ )

]
= 0 (5.11)

and if B(γ̇ → ∞)=0, then

A = ln

(
ν∞ − ν ′

∞
ν ′

∞

)
.

From here, (5.9) becomes

σQS(ν, γ̇ ) =
1

β

[
ln

(
ν∞ − ν ′

∞
ν∞ − ν

)(
ν

ν ′
∞

)
+ B(γ̇ )

]
∼=

1

β

[
ln

(
ν∞ − ν ′

∞
ν∞ − ν

)
+ B(γ̇ )

]
, (5.12)

where the approximation is applicable if volume-fraction changes are small so that
the ν/ν ′

∞ ≈ 1. We assume that the volume-fraction is exponentially dependent on
strain rate with fitting constants C1 and C2, while satisfying the boundary conditions.
According to shear-compaction in (5.3), the volume-fraction increases with shear rate
of the form

ν(σ, γ̇ ) = ν∞ − ν∞ − ν ′
∞

1 − C1 exp(−C2γ̇ )
func(σQS), (5.13)

where func(σQS) is an arbitrary stress function to make the equation self-consistent
with (5.12). Note, the rigorous derivation of the exponential function of shear
rate is not included in the current derivation. The physical meaning of C2 =
f n(ρU 2/σ, µf , ν, e, s) may be the consolidation time τc given in Appendix A.4. The

ratio τc/γ̇
−1 would then compare grain-settling time to grain-contact time. A larger

τc describes a denser medium at a given pressure and particle density, where grains
move sluggishly into neighbouring vacancies.

Substituting for ν using (5.13), (5.12) becomes

ν∞ − ν ′
∞

ν∞ − ν
=

1 − C1 exp(−C2γ̇ )

func(σQS)
= exp[βσQS − B(γ̇ )] (5.14)
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and solving for func(σQS) and B(γ̇ ), we obtain

func(σQS) = exp(−βσQS) (5.15)

and

exp[B(γ̇ )] =
1

1 − C1 exp(−C2γ̇ )
. (5.16)

Then using (5.15), (5.13) becomes

ν(γ̇ , σQS) = ν∞ − ν∞ − ν ′
∞

1 − C1 exp(−C2γ̇ )
exp(−βσQS). (5.17)

For completeness, by applying boundary condition (5.10a), the gravity-induced
minimum volume-fraction is

ν(γ̇ → 0, σ → 0) = ν ′
0 = ν∞ − ν∞ − ν ′

∞
1 − C1

(5.18)

and

ν ′
∞/ν∞ � C1 < 1, (5.19)

since ν � 0 and ν � ν ′
∞ <ν∞. The magnitude of C1 is a function the compacting forces,

i.e. external pressure or gravity. As the rate approaches zero, the limiting volume
fraction ν ′

0 under zero gravity is referred to by Onoda & Liniger (1990) as the
‘dilatancy onset’ – a particular packing-density where shear-dilatancy does not occur.
From (5.17), the bulk stress of a granular solid is

σQS(ν, γ̇ ) =
1

β
ln

[
ν∞ − ν ′

∞
ν∞ − ν

1

1 − C1 exp(−C2γ̇ )

]
. (5.20)

Notice (5.20) accounted only for the states within the QS and the transitional
regimes. To include the GI regime fit, we looked at the dimensionless groups of (A 5)
where the stresses are quadratically dependent on shear rate. Therefore, similar to the
Savage (1998) analysis, the GI stress is

σGI = func(ν, e, s)ρD2γ̇ 2 = C3ρD2γ̇ 2. (5.21)

Here, the function term is reduced to a fitting constant C3 since the sample and
volume-fraction are kept constant in the experiment. Summing (5.20) and (5.21), we
form a constitutive law for the observations in figures 5(a, b) and 8, namely,

σsum(ν, γ̇ ) =
1

β
ln

[
ν∞ − ν ′

∞
ν∞ − ν

1

1 − C1 exp(−C2γ̇ )

]
+ C3ρD2γ̇ 2. (5.22)

As for shear stress, by assuming a constant proportionality that µ = τ/σ , it becomes
clear that

τsum(ν, γ̇ ) = µ

{
1

β
ln

[
ν∞ − ν ′

∞
ν∞ − ν

1

1 − C1 exp(−C2γ̇ )

]
+ C3ρD2γ̇ 2

}
. (5.23)

Also, a composite volume-fraction φ that relates to the ratio of the interstitial volumes
e and e′

∞ is given by

φ =
e′

∞
e

≈ ν∞ − ν ′
∞

ν∞ − ν
. (5.24)

The interstitial free-volume ratio e and the minimum ratio e′
∞, which is applicable as

the rate approaches infinity, are based on (5.7). Appendix C calculates the experimental
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Figure 10. Log–log plot comparing data and the model for pressure versus shear rate from
the constant-volume experiments. The fit has two sets for �, 1 mm and ∗, 6 mm experiments.
– · –, QS fit (5.20); – – –, GI fit (5.21); ——, the sum of the previous two contributions (see
(5.22)). Other results totalling 5 runs each from 6 mm and 1 mm experiments show consistent
fits.

φ based on the measured height change. Thus, (5.22) can be written as

φ = [1 − C1 exp(−C2γ̇ )] exp[β(σsum − C3ρD2γ̇ 2)]. (5.25)

5.1. Least-squares fit

In figure 10, the log–log plot fits (5.22) to the constant-volume experiment in
figure 5(b). The pressure versus strain-rate data are for sifted beach sand. The
log–log plot shows the stress contribution from the GI factors in (5.21) and the QS
factors in (5.20) separately, and their sum is in good agreement with the observed flow
regimes. In figure 11, the log–log plot fits (5.25) to the constant-pressure experiment
in figure 8. The interstitial volume ratio φ , as given in (5.24), is found using the
measured column height with the method described in Appendix C.

The constants β , C1, C2 and C3 are found using an iterative least-squares fitting
procedure in MATLAB. Table 3 gives the fitting constants for experiments of 1 µm
and 6 µm columns as well as constant-volume and constant-pressure configurations.
The resulting fits correlate well only for the 6 mm experiments. The coefficients for
1 mm parameters are significantly different from the 6 mm fits. The disparity indicates
the lack of scale invariance with respect to system size for the fitting parameters β ,
C1, C2 and C3. Thus based on the lack of consistency, we speculate that our constants
are only consistent for sufficiently large sample volumes (see § 4.3).

Table 3 summarizes our fitting results. The a priori value of 13 µm is used for
the dilatancy height δ in (C 5) to calculate the interstitial volume ratio φ for all fits.
Compressibility β can be compared to the mean value ≈ 4×10−3 Pa−1 measured from
(5.5) using stress-rate and volume-rate data. The similar values in both fit and model
confirm the compressible nature of granular fluids. Constant C1 is nearly unity; it is
restricted to be less than 1 in the fitting procedure, as required for the non-negative
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Figure 11. Log–log plot of comparison between theory and free-volume ratio versus shear
rate from the constant-pressure experiment. ×, σ = 7 kPa. The grain column is 6 mm. – · –, QS
fit; – – –, GI fit; ——, the product of the previous two contributions as shown in (5.25).

volume-fraction as derived in (5.19). C1 determines the solid volume-fraction at
the ‘dilatancy onset’ (see Onoda & Liniger 1990) and it is a positive function of the
consolidation pressure. Constant C2 is ∼ 10−5 s, and for the parameters in table 1, the
settling time τc is ∼10−4 s from (A 7). The near-coincidence of these values suggests
a line of investigation for further work. Constant C3 is a function of volume-fraction
according to (A 5) and the analysis by Savage (1998). The slight inconsistency between
constant-volume and constant-pressure values of C3 in table 3 support this claim.

The agreement between our analytical model and empirical data from both heights,
along with similar fitting parameters, validates the present model. The compressibility
of air at standard temperature and pressure (STP) condition is 10−5 Pa−1, about one
order of magnitude less than the compressibility of flowing sand.

6. Conclusions
In our attempt to recover the transitional granular flow regime, we have seen a

glimpse of how particles collectively respond to simple shear. The five decades of shear
rate in the present experiment correlate to many natural and industrial processes:
avalanches, landslides, dredging and particle fluidization in mixing, segregation and
compaction. Our results show the following.

(i) During constant volume, shear-weakening occurs during transitional flow rates.
Both shear and normal stresses ‘dip’ and reach a minimum value. Bagnold scaling
∼ γ̇ 2 is observed for the grain-inertial regime.

(ii) During constant pressure, shear-compaction occurs during transitional flow
rates. The reversible volume-fraction plateaus and then decreases with inverse Bagnold
scaling ∼ γ̇ −2 in the grain-inertial regime.

(iii) The transitional flow regime is much broader than previous observations
spanning a Savage number range from 10−7 to 10−1.



Transitional regime of granular flow 367

(iv) An equation-of-state devised based on granular compressibility unifies our
findings. Fitting parameters remain consistent from all experiments with adequate
shear-band thickness.

(v) Particle sphericity has a great effect on transitional regime. Shear-weakening
does not exist for spherical grains, only rate-independent Coulomb stresses that
preceed Bagnold stresses ∼ γ̇ 2 above a Savage number ∼ 1.

The present constitutive law provides insight into the scenario presented in § 4.1.2
illustrating a plausible physical origin for the observed granular rheology. As the
strain rate increases in a dense flow, force chains collapse and the granular fluid
becomes less stiff. The weaker fluid requires smaller normal forces to maintain the
packing imposed by the constant-volume boundary conditions. The result is the ‘dip’
that is observed in our experiments.

The quantitative analysis has its shortcomings. In particular, it does not consider
material properties such as the coefficient of restitution, rigidity and contact friction.
We do, however, suspect inelastic collisions, as well as boundary effect, to be a
part of a separate conservation law that balances the inter-granular momentum and
energy (see Jop et al. 2005), a law of motion that resolves velocity profile, granular
temperature, dissipation and convection (see Knight et al. 1996).

Despite being an incomplete description of granular flow, the current model
delineates granular-flow regimes. Moreover, the compressible model formulated for
the transitional regime may reflect the emerging macroscopic effect of the self-
organizational network of force chains. Although the local contact forces and
volume-fraction are highly probabilistic (see Behringer et al. 1999), spatial and
temporal ensemble averaging of the physical quantities provides a deterministic
granulodynamics as indicated by our experiment.

We hope the presented model can predict granular rheology in other configurations.
A non-trivial extension, however, is required in order to account for disparate methods
of excitation. The shear-driven deformation in our case is unlike gas or vibration-
induced fluidization. It will be interesting to see a comparison with the results from a
chute flow or fluidized bed. The comparison may further elucidate the exact physical
meanings of the fitting constants C1, C2, C3 used in our equations. The difficult
interpretation of the heterogeneous shear band must be reconciled in the various flow
types.

Our future work also includes a new annulus set-up. A confined channel will help
to eliminate any possible effect biased to the shear-rate variation of our current set-
up. Material confinement and excessive wear are the difficulties to overcome for the
current annulus geometry. Preliminary results show good agreement with the present
flat-plate configuration.

Appendix A. Dimensionless analysis
A general function for the macroscopic granular flow shear stress in terms of other

independent variables is

τ = f n(σ, ρ, U, g, ν, D, D′, e, µf , E, s). (A 1)

where σ is the applied pressure, ρ is the solid density, U is the translational grain
velocity, D is the average grain diameter, D′ is the sample size variance, or the degree
of polydispersity, g is the acceleration due to gravity, e is the coefficient of restitution
defined as the ratio between incident and reflected velocities, ν is the bulk solid
volume-fraction, µf is the intergrain friction coefficient, E is the bulk elastic modulus
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of the material and s is the grain sphericity which affects inter-particle friction.
Equation (A 1) is similar to that offered by Savage (1984). Since shear bandwidth is
proportional to grain size, the fluidized shear thickness is implicitly included in the
analysis. Below we quantify each regime using the Buckingham Pi theorem.

A.1. Quasi-static regime

To understand the pertinent parameters within the quasi-static regime, we choose
applied pressure σ , particle density ρ, and gravity g to quantify the flow. Thus, (A 1)
in terms of dimensionless groups for the quasi-static regime is

τ

σ
= f n

(
ρU 2

σ
,
ρgD

σ
,
ρgD′

σ
,
E

σ
, µf , ν, e, s

)
. (A 2)

In our analysis for large applied loads, the gravitational body forces can be neglected
in (A 2). The particle Young’s modulus, E, is also assumed to be sufficiently high
compared to the applied pressure, σ . Also, because of segregation, D′ 	 D. From the
above assumptions, for vanishing shear velocity and thus neglecting inelastic collision
effects, (A 2) becomes

τ

σ
= f n(µf , ν, s). (A 3)

The resulting stress behaviour is only a function of particle friction and sphericity,
and volume-fraction. The overall macroscopic properties are also rate-independent
for a granular layer operating in the quasi-static regime. The effect of grain sphericity
s may tie directly into volume-fraction, as discussed in § 3.

A.2. Grain-inertial regime

In a rapid shear flow, instead of a frictional sliding contact between grains, it is the
inelastic collisions that are responsible for most of the momentum transport. The solid
concentration is low and particles have a random fluctuation velocity component in
addition to the mean velocity (see Savage 1984). For the GI regime, we choose ρ,
D and U to quantify the flow. Thus, (A 1) in its dimensionless groups for Savage
numbers greater than unity becomes

τ

ρU 2
= f n

(
σ

ρU 2
,
D′

D
,

E

ρU 2
,
gd

U 2
, µf , ν, e, s

)
. (A 4)

Analogous to the procedure in § A.1, the particle-kinetic quality of granular material
is revealed by neglecting gravitational and lower-order velocity terms in (A 4). Also
because of segregation, the medium becomes mono-dispersed circumferentially so
that D′ 	 D. The resulting mean shear and normal stresses, τ and σ , are described as

τ

ρU 2
= f n

(
σ

ρU 2
, ν, e, s

)
. (A 5)

Stresses are proportional to the square of the average grain velocity, or the granular
kinetic energy. Equation (A 5) is comparable to the relations given in Bagnold’s
analysis (1954).

A.3. Transitional flow regime

In the limiting flow regimes discussed above, bulk stresses are controlled by different
mechanisms and physical parameters as mentioned in Appendices A.1 and A.2.
Therefore, the transitional regime between them should consequently exhibit features
that resemble both rate-dependent and rate-independent regimes. Depending on the
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relative stress levels and packing density and assuming the compressible nature of
granular packing density, various dimensionless groups in (A 3) and (A 5) can be
significant. We anticipate the importance of first-order velocity to the quasi-static
groups. Hence,

τ

σ
= f n

(
ρU 2

σ
, µf , ν, e, s

)
. (A 6)

A.4. Consolidation time scale

The settling or relaxation time for granular fluids under pressure can be approximated
from kinematics as τc ∼

√
2l/ā. Length scale l ∼ D, the mean grain diameter,

represents the vacancy length per grain that allows for grain mobility, as a direct
result of shear-dilation–interstitial volume expansion due to granular deformation (see
Reynolds 1885). It resembles the length scale Bagnold derived from solid volume-
fraction (see Bagnold 1954). Average grain acceleration ā from wall collisions relates
to the vacancy length, consolidation pressure σ , and grain density ρ by ā ∼ σ/ρl.
Similarly for grains rotating from wall shear, angular acceleration becomes ᾱ ∼ τ/ρDl

where ᾱ ∼ ā/D. These rough estimates also assume Hertzian contact area as ∼ D2

from a rough shearing surface. Finally since l ∼ D and σ ∼ τ , we arrive at an average
relaxation time,

τc ∼ D

√
ρ

σ
. (A 7)

The time scale (A 7) refers to how fast grains settle into their respective vacancies
under compression. It implicitly assumes that it is only for dense flows, so that
l ∼ D becomes small to a degree where the system no longer consolidates relative to
the experimental time scale ∼ γ̇ −1. It is at this dense packing where the system
can approach steady-state shear. Also note for extremely low shear rates, the
above analysis is valid only for angular grain mixtures where crystallization – the
ordered packing of a lattice formation – is bypassed. See § 4.1.2 for a detailed
discussion.

Appendix B. Dimensionless volume-fraction
The relations below approximate the volume-fraction ratio ν/ν0, where ν0 is the

volume-fraction during the QS regime as the shear rate approaches zero. For an
arbitrary shear-band thickness Hα and area A, the mass of the sample bulk is

[mass]α = ρναHαA, (B 1)

and ρ and να are material density and volume-fraction. For the same number of
particles, the total mass remains constant through any volumetric changes. Then for
a different shear-band thickness Hβ ,

ναHα = νβHβ, Hα(γ̇ ) = Hβ + �H (γ̇ ), (B 2)

where �H (γ̇ ) > 0 is the height change – the only measured parameter. The rate-
dependent Hβ conflicts with our Savage-number approximation where shear-band
thickness is assumed to be rate invariant. The inconsistency may be explained by
figure 8 where the maximum �H (γ̇ ) is below the resolution of a single grain – hence
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�H (γ̇ ) does not alter our approximation that H ≈ 2D. Continuing from (B 2), the
dimensionless volume-fraction becomes

να

νβ

= 1 +
�H

Hβ

. (B 3)

Shear-band thickness Hβ and its corresponding volume-fraction νβ are based on the
first-order approximation of the shear thickness being ≈ 2D, as discussed in § 2.
For clarification, ν = νstatic outside the shear band where grains are statically packed.
Using consistent indices by transforming α → 0 as the initial QS height, (B 3) becomes

ν(γ̇ )

ν0

= 1 +
�H (γ̇ )

2D
> 1. (B 4)

Appendix C. Free-volume ratio
To compare our model to the experimental data, the free-volume ratio φ in (5.25) is

calculated for constant-pressure experiments. Since the volume-fraction is impossible
to measure during shear, the measured top-plate height H is used instead. For a
given volume of porous material with unconfined height, the overall volume-fraction
is inversely proportional to the column height and a reference height. Here, we
choose the absolute maximum volume-fraction and its corresponding column height,
explicitly as ν∞ and H1 (figure 1). Therefore,

ν =
ν∞H1

H
, ν ′

∞ =
ν∞H1

H2

, (C 1)

where ν∞ and ν ′
∞ represent the dynamic volume-fractions as given in the boundary

conditions in (5.10a)–(5.10c). Note, ν ′
∞ is a state variable and thus non-universal.

H1 and H2 are the associated column heights for each volume-fraction, ν∞ and ν ′
∞ ,

signifying the dilation process during granular fluidization. The relationship between
H1, H2 and H (γ̇ ) is

H (γ̇ ) = H2 + �H (γ̇ ) = H1 + δ + �H (γ̇ ), (C 2)

where δ is the ‘dilatancy height’ that defines the minimum height difference between
dynamic and static packing (see figure 1). �H (γ̇ ) is the measured column height
change by the system. For comparison, H1 <H2 <H3. Therefore, the volume-fraction
ratio from (5.25), using (C 1), is

ν∞ − ν ′
∞

ν∞ − ν
=

1 − H1/H2

1 − H1/H
, (C 3)

and combine with relation (C 2),

ν∞ − ν ′
∞

ν∞ − ν
=

1 − H2/H2 + δ/H2

1 − H (γ̇ )/H (γ̇ ) + δ/H (γ̇ ) + �H (γ̇ )/H (γ̇ )
. (C 4)

Also assuming H2 ≈ H (γ̇ ) , the interstitial volume ratio φ becomes

φ =
ν∞ − ν ′

∞
ν∞ − ν

∼=
(

1 +
�H (γ̇ )

δ

)−1

� 1. (C 5)
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